

NON-RETURN VALVE RT 25

DESCRIPTION

The RT25 all stainless steel disc check valve has a compact design and was specially designed for use with steam and hot condensate.

Connections are female screwed

MAIN FEATURES

Low pressure drop. Simple and compact design.

OPTIONS: Soft sealing:

EPDM (E), NBR (N), VITON

(V), PTFE (T). Inconel springs

USE: Saturated steam, water and

other gases (Group 2) compatible with the

construction

AVAILABLE

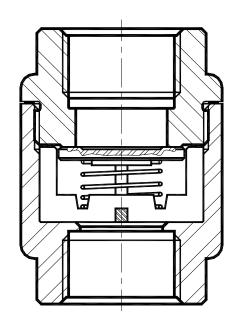
MODELS: RT 25

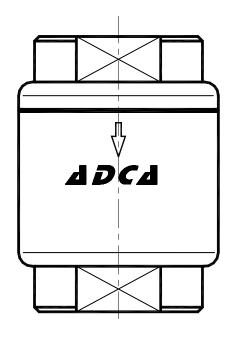
SIZES: DN 3/8" to DN 2"

CONNECTIONS: Female screwed ISO 7/1 Rp

(BS21)

INSTALLATION: Horizontal or vertical

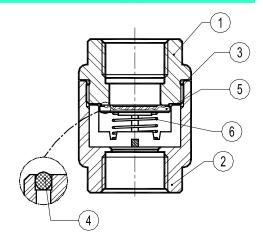

installation .See IMI, installation and maintenance instructions.

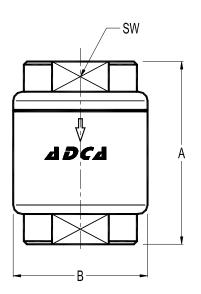

RATING: PN 25

PMA – Max.allowable pressure 32 bar TMA – Max.allowable temperature 250 °C PMO – Max.operating pressure 21 bar TMO –Max. Operating temperature 220 °C

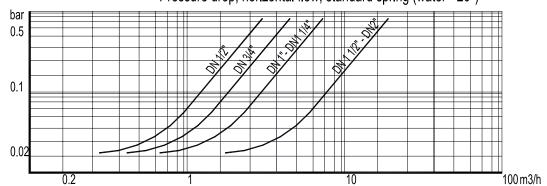
Recommended limit of operation with soft seats (°C)				
EPDM (E) NBR (N)		VITON (V)	PTFE (T)	
130°	95°	180°	180°	

CE MARKING			
PN 25	Category		
DN3/8" to DN 11/2"	SEP - art. 3, paragraph3		
DN 2"	Category1 (CE marked)		




STEAM EQUIPMENT

DIMENSIONS (mm)							
DN	3/8"	1/2"	3/4"	1"	11/4"	11/2"	2"
Α	55	55	60	70	61	72	72
В	40	40	45	50	65	80	80
SW	27	27	32	41	50	55	70
Kgs	0,3	0,3	0,38	0,54	0,68	0,96	1,13


MATERIALS					
POS.	DESIGNATION	MATERIAL			
1	Valve body	AISI 316			
2	Cover	AISI 316			
4	*Soft seal	See options			
5	*Valve disc	AISI 316			
6	*Spring	AISI 302			
*Available spare parts					

	Minimum opening pressures with standard spring in mbar								
D	N	3/8"	1/2"	3/4"	1"	11/4"	11/2"	2"	
D.P.	4	25	25	25	25	25	28	29	
D.P.	+	23	23	23	23	24	25	25	
D.P.	*	21	21	21	21	21	21	21	
*D.P.	A	2	2	2	2	3	4	4	
* Vertic	al insta	llation wi	thout sp	rings (b	ottom to	top).	→	Flow d	irection.

Pressure drop, horizontal flow, standard spring (water - 20°)

To determine the pressure drop of other mediums the equivalent water flow volume has to be calculated: $V_{\scriptscriptstyle W} = \sqrt{\frac{Q}{1000}} \times V$

Vw = Equivalent water flow volume in m3/h; Q = Density in Kg/m3; V = Flow volume in m3/h

